Образовательное частное учреждение Дополнительного профессионального образования «Центр компьютерного обучения «Специалист» Учебно-научного центра при МГТУ им. Н.Э. Баумана» (ОЧУ «Специалист»)

123242, город Москва, улица Зоологическая, дом 11, строение 2, помещение I, комната 11 ИНН 7701257303, ОГРН 1037739408189

> Утверждаю: Директор ОЧУ «Специалист»

> > Т.С.Григорьева/ «01» июня 2018 года

Дополнительная профессиональная программа повышения квалификации «ССNР SWITCH 7.1: Внедрение коммутируемых сетей

Cisco»

Программа разработана в соответствии с приказом Министерства образования и науки Российской Федерации от 1 июля 2013 г. N 499 "Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам".

Повышение квалификации слушателей, осуществляемое в соответствии с программой, проводится с использованием модульного принципа построения учебного плана с применением различных образовательных технологий, в том числе дистанционных образовательных технологий и электронного обучения в соответствии с законодательством об образовании.

Дополнительная профессиональная программа повышения квалификации, разработана образовательной организацией в соответствии с законодательством Российской Федерации, включает все модули, указанные в учебном плане.

Содержание оценочных и методических материалов определяется образовательной организацией самостоятельно с учетом положений законодательства об образовании Российской Федерации.

Структура дополнительной профессиональной программы соответствует требованиям Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам, утвержденного приказом Минобрнауки России от 1 июля 2013 г. N 499.

Объем дополнительной профессиональной программы вне зависимости от применяемых образовательных технологий, должен быть не менее 16 академических часов. Сроки ее освоения определяются образовательной организацией самостоятельно.

Формы обучения слушателей (очная, очно-заочная, заочная) определяются образовательной организацией самостоятельно.

К освоению дополнительных профессиональных программ допускаются:

- лица, имеющие среднее профессиональное и (или) высшее образование;
- лица, получающие среднее профессиональное и (или) высшее образование.

Для определения структуры дополнительной профессиональной программы и трудоемкости ее освоения может применяться система зачетных единиц. Количество зачетных единиц по дополнительной профессиональной программе устанавливается организацией.

Образовательная деятельность слушателей предусматривает следующие виды учебных занятий и учебных работ: лекции, практические и семинарские занятия, лабораторные работы, круглые столы, мастер-классы, мастерские, деловые игры, ролевые игры, тренинги, семинары по обмену опытом, выездные занятия, консультации, выполнение аттестационной, дипломной, проектной работы и другие виды учебных занятий и учебных работ, определенные учебным планом.

Аннотация. «Cisco Networking Academy – CCNP SWITCH 7.1: Implementing Cisco IP Switched Networks» – обучающий курс, благодаря которому Вы научитесь правильно работать с различными технологиями коммутируемых сетей, используя сервисы и функции Cisco IOS.Курс рассчитан на сетевых инженеров, персонал технической поддержки операторских сетей или любого человека, работающего с сетями и в области технической поддержки. Также обучение по этому курсу будет полезно тем, кто обладает знаниями в объёме программы, но хочет их систематизировать, а также повысить свою эффективность за счёт новых приёмов и методов работы. Курс состоит из занятий с опытным преподавателем и самостоятельных занятий по официальному учебному пособию Implementing Cisco IP Switched Networks (SWITCH) Foundation Learning Guide на английском языке. Также мы подготовим Вас к сдаче экзамена: 300-115 Implementing Cisco IP Switched Networks (SWITCH).

Цель программы: программа повышения квалификации направлена на совершенствование и (или) получение новой компетенции, необходимой для профессиональной деятельности, и (или) повышение профессионального уровня в рамках имеющейся квалификации. Цель курса – предоставить слушателям практические знания и

навыки, необходимые для того, чтобы научить их правильно работать с различными технологиями коммутируемых сетей по заданному проекту, используя сервисы и функции Cisco IOS.

Совершенствуемые компетенции

No	Компетенция	Направление подготовки
		ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА ВЫСШЕГО ОБРАЗОВАНИЯ ПО НАПРАВЛЕНИЮ ПОДГОТОВКИ 09.03.02 ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ (УРОВЕНЬ БАКАЛАВРИАТА) КОД КОМПЕТЕНЦИИ
1	способностью проводить выбор исходных данных для проектирования	ПК-4
2	способностью использовать математические методы обработки, анализа и синтеза результатов профессиональных исследований	ПК-25

Совершенствуемые компетенции в соответствии с трудовыми фикциями профессионального стандарта «Системный администратор информационно-коммуникационных систем" (Приказ Министерства труда и социальной защиты РФ от 5 октября 2015 г. N 684н "Об утверждении профессионального стандарта "Системный администратор информационно-коммуникационных систем").

$N_{\underline{0}}$	Компетенция	Направление подготовки		
	ОТФ	ПРОФЕССИОНАЛЬНЫЙ СТАНДАРТ «Системный администратор информационно-коммуникационных систем» Трудовые функции (код)		
1	В5 Администрирование прикладного программного Обеспечения инфокоммуникационной системы организации	В/01.5 Установка прикладного программного обеспечения В/02.5 Оценка критичности возникновения инцидентов при работе прикладного программного обеспечения. В/03.5 Оптимизация функционирования прикладного программного обеспечения В/04.5 Интеграция прикладного программного обеспечения в единую структуру инфокоммуникационной системы. В/05.5 Реализация регламентов		

обеспечения информационной
безопасности прикладного
программного обеспечения.
В/06.5 Разработка нормативно-
технической документации на
процедуры управления прикладным
программным обеспечением.
В/07.5 Разработка требований к
аппаратному обеспечению и
поддерживающей инфраструктуре для
эффективного функционирования
прикладного программного
обеспечения.

Планируемый результат обучения:

После окончания обучения Слушатель будет знать:

Дизайн кампусной сети

Технологии VLAN, Trunk, EtherChannel

Протоколы семейства Spanning Tree, включая протоколы PVST+, PVRST+, MST

Маршрутизацию между VLAN на многоуровневых коммутаторах

Протоколы DHCPv4 и DHCPv6

Протоколы резервирования первого шлюза (HSRP, HSRPv6, VRRP, GLBP), а также ознакомитесь с продвинутыми технологиями высокой доступности (StackWise, VSS, Redundant Supervisors)

Протоколы CDP и LLDP

Протокол SNMP, технологий SPAN, RSPAN, Cisco IP SLA

Технологии Port Security, Storm Control, DHCP Snooping, Dynamic ARP Inspection, IP Source Guard и Private VLAN

После окончания обучения Слушатель будет уметь:

Анализировать дизайн кампусной сети

Планировать и внедрять технологии VLAN, Trunk, EtherChannel

Планировать и внедрять протоколы семейства Spanning Tree, включая протоколы PVST+, PVRST+, MST

Планировать и внедрять маршрутизацию между VLAN на многоуровневых коммутаторах Планировать и внедрять протоколы DHCPv4 и DHCPv6

Планировать и внедрять протоколы резервирования первого шлюза (HSRP, HSRPv6, VRRP, GLBP), а также ознакомитесь с продвинутыми технологиями высокой доступности (StackWise, VSS, Redundant Supervisors)

Анализировать имеющуюся инфраструктуру с помощью протоколов CDP и LLDP

Осуществлять мониторинг сети с помощью протокола SNMP, технологий SPAN, RSPAN, Cisco IP SLA

Находить уязвимости и устранять их с помощью технологий Port Security, Storm Control, DHCP Snooping, Dynamic ARP Inspection, IP Source Guard и Private VLAN

2. Учебный план:

Категория слушателей:

Курс рассчитан на сетевых инженеров, персонал технической поддержки операторских сетей или любого человека, работающего с сетями и в области технической поддержки. Также обучение по этому курсу будет полезно тем, кто обладает знаниями в объёме программы, но хочет их

систематизировать, а также повысить свою эффективность за счёт новых приёмов и методов работы.

Требования к предварительной подготовке:

Успешное окончание курса ICND2: Использование сетевого оборудования Cisco v 3.0 Часть 2 Официальный учебник + перевод руководства по лабораторным работам! или эквивалентная подготовка. «Английский язык. Уровень 2. Elementary, часть 2», или эквивалентная подготовка.

Срок обучения: 40 академических часов, в том числе 40 аудиторных, 0 самостоятельно (СРС).

Форма обучения: очная, очно-заочная, заочная. По желанию слушателя форма обучения может быть изменена и/или дополнена.

Режим занятий: дневной, вечерний, группы выходного дня.

No			бща Всег		В том числе		Фор
п/п	Наименование модулей по программе	я трудо емкос ть (акад. часов)	о ауд. ч	Лек ций	Практ занят ий	,ч	ма ПА ¹
1	Модуль 1. Базовые понятия коммутации	7	3	1	2	4	Лабо ратор ная работ а
2	Модуль 2. Основы дизайна сети	7	3	1	2	4	Лабо ратор ная работ а
3	Модуль 3. Архитектура кампусной сети	7	3	1	2	4	Лабо ратор ная работ а
4	Модуль 4. Протоколы семейства Spanning Tree	7	3	1	2	4	Лабо ратор ная работ а
5	Модуль 5. Маршрутизация между VLAN (Inter-VLAN Routing, IVL-Routing) и протоколы DHCPv4, DHCPv6 (Dynamic Host Configuration Protocol for IPv4 and IPv6)	7	3	1	2	4	Лабо ратор ная работ а
6	Модуль 6. Протоколы резервирования первого шлюза (First Hop Redundancy Protocols, FHRP)	7	3	1	2	4	Лабо ратор ная работ а

¹ ПА – промежуточная аттестация.

-

7	Модуль 7. Управление сетью	7	3	1	2	4	Лабо ратор ная работ а
8	Модуль 8. Функциональные возможности и технологии для кампусных сетей	7	3	1	2	4	Лабо ратор ная работ а
9	Модуль 9. Технологии высокой доступности (High Availability)	7	3	1	2	4	Лабо ратор ная работ а
10	Модуль 10. Защита кампусной сети	7	3	1	4	2	Лабо ратор ная работ а
	Итого:	70	32	10	22	38	
	Итоговая аттестация	тестирование			•		

Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

Количество аудиторных занятий при очно-заочной форме обучения составляет 20-25% от общего количества часов.

Форма Промежуточной аттестации – см. в ЛНА «Положение о проведении промежуточной аттестации слушателей и осуществлении текущего контроля их успеваемости» п.3.3.

1. Календарный учебный график

Календарный учебный график формируется при осуществлении обучения в течение всего календарного года. По мере набора групп слушателей по программе составляется календарный график, учитывающий объемы лекций, практики, самоподготовки, выезды на объекты.

Неделя обучения	1	2	3	4	5	6	7	Итого часов
	ПН	BT	ср	ЧТ	ПТ	сб	вс	
1 неделя	2	4	4	-	-	-	-	10
CPC	4	4	4	-	-	-	-	12
2 неделя	4	4	4	-	-	-	-	12
CPC	4	4	4	-	-	-	-	12
3 неделя	4	4	4ИА	-	-	-	-	12
CPC	4	4	4	-	-	-	-	12
Итого:	22	24	24	-	-	-	-	70
Примечание: ИА – Итоговая аттестация (тестирование)								

2. Рабочие программы учебных предметов

Модуль 1. Базовые понятия коммутации

- Базовые понятия коммутации
- Лабораторная работа: Первоначальная настройка коммутаторов 1

Модуль 2. Основы дизайна сети

- Структура кампусной сети
- Типы коммутаторов Cisco

Модуль 3. Архитектура кампусной сети

- Внедрение технологий VLAN и Trunk
- Протокол VTP (VLAN Trunking Protocol)
- Внедрение технологии EtherChannel
- Лабораторная работа: Внедрение технологии EtherChannel
- Лабораторная работа (опционально): Настройка статических VLAN, Trunk и протокол

Модуль 4. Протоколы семейства Spanning Tree

- Обзор протоколов семейства Spanning Tree
- Протокол RSTP (Rapid Spanning Tree Protocol)
- Внедрение механизмов стабильности
- Протокол MST (Multiple Spanning Tree)
- Поиск и устранение неисправностей в работе протоколов семейства Spanning Tree
- Лабораторная работа: Внедрение протоколов PVST+ (Per-VLAN Spanning Tree Plus) и F
- **Лабораторная работа:** Внедрение протокола MST

Модуль 5. Маршрутизация между VLAN (Inter-VLAN Routing, IVL-Routing) и протоколы I Configuration Protocol for IPv4 and IPv6)

- Внедрение маршрутизации между VLAN (Inter-VLAN Routing, IVL-Routing)
- Сравнение EtherChannel Layer 2 и EtherChannel Layer 3
- Внедрение протоколов DHCPv4 и DHCPv6 (Dynamic Host Configuration Protocol for IPv4 а
- Лабораторная работа: Внедрение маршрутизации между VLAN (Inter-VLAN Routing, IV
- Лабораторная работа: Внедрение протоколов DHCPv4 и DHCPv6 (Dynamic Host Config

Модуль 6. Протоколы резервирования первого шлюза (First Hop Redundancy Protocols, FH

- Обзор протоколов резервирования первого шлюза (First Hop Redundancy Protocols, FHRP)
- Внедрение протокола HSRP (Hot Standby Router Protocol)
- Внедрение протокола HSRPv6 (Hot Standby Router Protocol for IPv6)
- Внедрение протокола VRRP (Virtual Router Redundancy Protocol)
- Внедрение протокола GLBP (Gateway Load Balancing Protocol)

- Лабораторная работа: Внедрение протокола HSRP (Hot Standby Router Protocol)
- Лабораторная работа: Внедрение протокола HSRPv6 (Hot Standby Router Protocol for IP-
- Лабораторная работа: Внедрение протокола VRRP (Virtual Router Redundancy Protocol)
- Лабораторная работа: Внедрение протокола GLBP (Gateway Load Balancing Protocol)

Модуль 7. Управление сетью

- Модель AAA (Authentication, Authorization, Accounting)
- Доступ в сеть на основе идентификационных данных (Identity-Based Access). Протокол 8
- Протокол NTP (Network Time Protocol)
- Протокол SNMP (Simple Network Management Protocol)
- Лабораторная работа: Внедрение протокола NTP (Network Time Protocol)
- Лабораторная работа: Внедрение протокола SNMP (Simple Network Management Protoco

Модуль 8. Функциональные возможности и технологии для кампусных сетей

- Протоколы CDP (Cisco Discovery Protocol) и LLDP (Link-Layer Discovery Protocol)
- Технология UDLD (Unidirectional Link Detection)
- Технология PoE (Power over Ethernet)
- Шаблоны SDM (Switch Database Management Templates, SDM Tempates)
- Технологии SPAN (Switch Port Analyzer) и RSPAN (Remote Switch Port Analyzer)
- Технологии Cisco IP SLA (Cisco IP service level agreement)
- Лабораторная работа: Внедрение технологии Cisco IP SLA (Cisco IP service level agreem
- Лабораторная работа (опционально): Внедрение технологии SPAN (Switch Port Analyz Analyzer)

Модуль 9. Технологии высокой доступности (High Availability)

- Технология StackWise
- Технология VSS (Virtual Switching System)
- Технология избыточных супервизоров (Redundant Supervisors)

Модуль 10. Защита кампусной сети

- Обзор уязвимостей и технологий защиты кампусной сети
- Внедрение технологии Port Security
- Внедрение технологии Storm Control
- Внедрение технологии DHCP Snooping
- Внедрение технологии DAI (Dynamic ARP Inspection)
- Внедрение технологии IPSG (IP Source Guard)
- Внедрение технологии PVLAN (Private VLAN)
- **Лабораторная работа:** Комплексное внедрение технологий защиты на коммутаторах вто
- Лабораторная работа: Внедрение технологии PVLAN (Private VLAN)

3. Организационно-педагогические условия

Соблюдение требований к кадровым условиям реализации дополнительной профессиональной программы:

- а) преподавательский состав образовательной организации, обеспечивающий образовательный процесс, обладает высшим образованием и стажем преподавания по изучаемой тематике не менее 1 года и (или) практической работы в областях знаний, предусмотренных модулями программы, не менее 3 (трех) лет;
- б) образовательной организацией наряду с традиционными лекционно-семинарскими занятиями применяются современные эффективные методики преподавания с применением интерактивных форм обучения, аудиовизуальных средств, информационно-телекоммуникационных ресурсов и наглядных учебных пособий.

Соблюдение требований к материально-техническому и учебно-методическому обеспечению дополнительной профессиональной программы:

- а) образовательная организация располагает необходимой материально-технической базой, включая современные аудитории, библиотеку, аудиовизуальные средства обучения, мультимедийную аппаратуру, оргтехнику, копировальные аппараты. Материальная база соответствует санитарным и техническим нормам и правилам и обеспечивает проведение всех видов практической и дисциплинарной подготовки слушателей, предусмотренных учебным планом реализуемой дополнительной профессиональной программы.
- б) в случае применения электронного обучения, дистанционных образовательных технологий каждый обучающийся в течение всего периода обучения обеспечивается индивидуальным неограниченным доступом к электронной информационно-образовательной среде, содержащей все электронные образовательные ресурсы, перечисленные в модулях дополнительной профессиональной программы.

4. Формы аттестации и оценочные материалы

Образовательная организация несет ответственность за качество подготовки слушателей и реализацию дополнительной профессиональной программы в полном объеме в соответствии с учебным планом.

Оценка качества освоения дополнительной профессиональной программы слушателей включает текущий контроль успеваемости и итоговую аттестацию.

Промежуточная аттестация по данному курсу проводится в форме выполнения практических работ, к итоговой аттестации допускаются слушатели, выполнившие все практические работы.

Результаты итоговой аттестации слушателей ДПП в соответствии с формой итоговой аттестации, установленной учебным планом, выставляются по двух бальной шкале («зачтено\незачтено»).

Слушателям, успешно освоившим дополнительную профессиональную программу и прошедшим итоговую аттестацию, выдается удостоверение о повышении квалификации.

Слушателям, не прошедшим итоговой аттестации или получившим на итоговой аттестации неудовлетворительные результаты, а также лицам, освоившим часть дополнительной профессиональной программы и (или) отчисленным из образовательной организации, выдается справка об обучении или о периоде обучения по образцу, самостоятельно устанавливаемому образовательной организацией. Результаты итоговой аттестации заносятся в соответствующие документы.

Итоговая аттестация проводится по форме представления учебных проектов и подготовки личного портфолио.

Промежуточная аттестация:

Практическая работа (выполнение заданий):

<i>№n/n</i>	Тематика практического занятия	Форма ПА
Модуль 1.	Лабораторная работа: Первоначальная настройка коммутаторов	Лабораторная работа
Модуль 3.	Лабораторная работа: Внедрение технологии EtherChannel Лабораторная работа (опционально): Настройка статических VLAN, Trunk и протокола VTP	Лабораторная работа
Модуль 4.	Лабораторная работа: Внедрение протоколов PVST+ (Per-VLAN Spanning Tree Plus) и PVRST+ (Per-VLAN Rapid Spanning Tree Plus) Лабораторная работа: Внедрение протокола MST	Лабораторная работа
Модуль 5.	Лабораторная работа: Внедрение маршрутизации между VLAN (Inter-VLAN Routing, IVL-Routing) Лабораторная работа: Внедрение протоколов DHCPv4 и DHCPv6 (Dynamic Host Configuration Protocol for IPv4 and IPv6)	Лабораторная работа
Модуль 6.	Лабораторная работа: Внедрение протокола HSRP (Hot Standby Router Protocol) Лабораторная работа: Внедрение протокола HSRPv6 (Hot Standby Router Protocol for IPv6) Лабораторная работа: Внедрение протокола VRRP (Virtual Router Redundancy Protocol) Лабораторная работа: Внедрение протокола GLBP (Gateway Load Balancing Protocol)	Лабораторная работа
Модуль 7.	Лабораторная работа: Внедрение протокола NTP (Network Time Protocol) Лабораторная работа: Внедрение протокола SNMP (Simple Network Management Protocol)	Лабораторная работа
Модуль 8.	Лабораторная работа: Внедрение технологии Cisco IP SLA (Cisco IP service level agreement) Лабораторная работа (опционально): Внедрение технологии SPAN (Switch Port Analyzer) и RSPAN (Remote Switch Port Analyzer)	Лабораторная работа
Модуль 10.	Лабораторная работа: Комплексное внедрение технологий защиты на коммутаторах второго уровня Лабораторная работа: Внедрение технологии PVLAN (Private VLAN)	Лабораторная работа

Итоговая аттестация по курсу (тестирование):

Вопросы теста/ответ:

181. Какие шаги следует предпринять для анализа и решения проблемы в сети после сбора данных о работе?

- Составить список возможных причин; расставить приоритеты причин; используя средства управления сетью или метод замены, идентифицировать причины
- 182. Каким образом карта сети помогает локализовать место возникновения проблемы с физическим элементом сети?
- Предоставляет информацию об адресах проблемного устройства
- 183. Какова цель инвентаризационной ревизии?
- Составление инвентаризационной описи всего программного и аппаратного обеспечения, используемого в сети
- 184. Какова цель ревизии средств защиты сети?
- Определение состава аппаратно-программного комплекса, требующегося для обеспечения зашиты сети
- 185. Какова цель ревизии установленного оборудования?
- Идентификация местонахождения каждого элемента сети
- 186. Какова цель ревизии эффективности?
- Определение того, работает ли сеть в соответствии со своим потенциалом
- 187. Что должно входить в письменную форму документа "Технические требования на изменения", который готовится для достижения более высокой производительности и уровня зашиты сети?
- Обоснования каждого запрашиваемого изменения
- 188. Что из приведенного ниже должно быть включено в отчет о проведении оценки?
- Журналы, показывающие тенденцию к уменьшению скорости трафика в определенных сегментах сети
- 189. Что из приведенного ниже правильно описывает протокол SNMP?
- Использует концепцию, известную под названием МІВ
- 190. Что из приведенного ниже правильно описывает работу протокола СМІР?
- Предусматривает наличие центральной рабочей станции мониторинга, которая ожидает от устройств сообщений об их текущем состоянии
- 191. В случае, когда все маршрутизаторы в сети работают с одной и той же информацией о топологии сети, то о сети говорят как о...
- конвергированной
- 192. Какая из следующих функций используется маршрутизатором для пересылки пакетов данных между сетями?
- Определение пути и коммутация
- 193. Какие из перечисленных ниже являются основными типами динамической маршрутизации?
- Дистанционно-векторный и канальный
- 194. Какое из приведенных ниже утверждений наилучшим образом описывает функции транспортного уровня эталонной модели OSI?
- Он посылает данные, используя управление потоком
- 195. Какой уровень эталонной модели OSI наилучшим образом описывает стандарты 10BaseT?
- Физический
- 196. Для чего оптимизируется асимметричная коммутация?
- Для потока данных сети в случае, когда "быстрый" порт коммутатора подсоединен к серверу

197. Каково минимальное время, требуемое для передачи одного байта данных в сети Ethernet?800 наносекунд
198. Какой из приведенных ниже методов широковещания используется передающей средой Ethernet для передачи и получения данных от всех узлов сети?Фреймы данных
199. Коммутаторами Ethernet являются• Мосты с несколькими портами на 2 уровне
200. При коммутации коммутатор проверяет адрес получателя и сразу начинает отправку пакета, а при коммутации коммутации коммутатор получает фрейм полностью перед последующей его отправкой. • Сквозной; с промежуточным хранением
201. Протокол распределенного связующего дерева позволяетиспользовать дополнительные пути, без отрицательных эффектов от образования петель
202. Что из перечисленного ниже характеризует микросегментацию сети?Выделенные пути между хостами отправителя и получателяНесколько путей передачи данных внутри коммутатора
 203. Каждый сегмент, подсоединенный к порту, может быть назначен только одной виртуальной сети. Концентратора; коммутатора
 204. Коммутаторы, которые являются ключевым элементом виртуальных сетей, дают возможность выполнить следующее: Выполнять обмен информацией между коммутаторами и маршрутизаторами Принять решения о фильтрации и отправке фреймов Сгруппировать пользователей, порты или логические адреса в виртуальной сети
205. Термин расширяемая микросегментация означает следующее:Возможность расширения сети без создания коллизионных доменов
206. Что из перечисленного ниже не является достоинством статической виртуальной сети? • Автоматическое обновление конфигурации портов при добавлении новых станций
207. Что из перечисленного ниже не является характерным признаком виртуальной сети?Все перечисленные понятия являются характерными признаками виртуальной сети
208. Что из перечисленного ниже является положительным результатом использования виртуальной сети?Отсутствует необходимость конфигурирования коммутаторов
209. Какая из следующих характеристик не верна для 10ВаѕеТ?• Максимальная длина — 400 метров
210. Основная цель проектирования канального уровня — это выбор устройств, таких как мосты или коммутаторы локальных сетей, используемых для соединения носителей с целью образования сегментов локальных сетей? • 2-го уровня; 1-го уровня
211. Что из перечисленного ниже вероятнее всего вызовет перегрузку в сети?Доступ в InternetДоступ к главной базе данных

- Передача графики и видео
- 212. Что из перечисленного ниже не вызывает чрезмерного широковещания?
- Слишком много сетевых сегментов
- 213. Что является преимуществом использования устройств 3-го уровня в локальной сети?
- Оно обеспечивает логическое структурирование сети
- Оно позволяет разделять локальную сеть на уникальные физические и логические сети
- Оно фильтрует широковещание и многоадресные рассылки канального уровня и позволяют подключаться к распределенным сетям

214	протоколы маршрутизации оп	ределяют направление и расстояние до
любого канала сети сов	местного использования;	протоколы
маршрутизации также н	азываются протоколами выбора пер	вого кратчайшего пути.

- Дистанционно-векторные; канального уровня
- 215. Какую из приведенных ниже команд следует использовать для выбора IGRP в качестве протокола маршрутизации?
- router igrp
- 216. От какого из приведенных ниже действий зависит успех динамической маршрутизации?
- Периодическое внесение изменений в таблицу маршрутизации
- Поддержание таблицы маршрутизации
- 217. После определения пути, по которому следует направить пакет, какое следующее действие может выполнить маршрутизатор?
- Коммутация пакета
- 218. Что из перечисленного ниже не является переменной, используемой протоколом IGRP для определения значения комбинированной метрики?
- Протокол IGRP использует все эти величины
- 219. Как называются дополнительные 32 бита в директиве access-list?
- Биты шаблона
- 220. Каким образом маршрутизатор различает стандартные списки управления доступом и расширенные?
- Стандартные списки управления доступом имеют номера от 1 до 99. Расширенные списки управления доступом имеют номера от 100 до 199
- 221. Какому из приведенных ниже высказываний эквивалентно выполнение команды Router(config)# access-list 1 156.1.0.0 0.0.255.255?
- "Разрешить доступ только к моей сети."
- 222. Какую из приведенных ниже команд следует использовать для того, чтобы выяснить, установлены ли на данном интерфейсе списки управления доступом?
- show ip interface
- 223. Команда show access-list используется для того, чтобы:
- просмотреть директивы списка управления доступом
- 224. Утверждение: "При задании разрешения на доступ в списке управления, сопровождаемом неявным "отказать всем", всем потокам данных, кроме указанного в директиве permit, будет отказано в доступе".
- Истинно